Interface dynamics for quasi-stationary Stefan problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interface dynamics for quasi-stationary Stefan problem

We investigate the interface dynamics in Laplacian growth model, using the conformal mapping technique. Starting from the governing equation obtained by B.Shraiman and D.Bensimon, we derive intergro-differential evolution equation of interphase dynamics. It is shown that such representation of the conformal mapping technique is convenient for computer simulations of the quasi-stationary Stefan ...

متن کامل

Classical solutions for the quasi-stationary Stefan problem with surface tension

We show that the quasi-stationary two-phase Stefan problem with surface tension has a unique smooth local solution. In addition we show that smooth solutions exist globally, provided that the initial interface is close to a sphere and no heat is supplied or withdrawn.

متن کامل

Newton-Product Integration for a Stefan Problem with Kinetics

Stefan problem with kinetics is reduced to a system of nonlinear Volterra integral equations of second kind and Newton's method is applied to linearize it. Product integration solution of the linear form is found and sufficient conditions for convergence of the numerical method are given. An example is provided to illustrated the applicability of the method.

متن کامل

Nonlinear Two-Phase Stefan Problem

In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.

متن کامل

A Stochastic Stefan Problem

We consider a stochastic perturbation of the Stefan problem. The noise is Brownian in time and smoothly correlated in space. We prove existence and uniqueness and characterize the domain of existence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical and Computer Modelling

سال: 2007

ISSN: 0895-7177

DOI: 10.1016/j.mcm.2006.08.009